
1

EECS 440 System Design of a Search Engine
Winter 2021 Syllabus

Instructor Nicole Hamilton
nham@umich.edu
https://web.eecs.umich.edu/~nham/
C: 425-765-9574

Lectures Live streamed and recorded.
Mondays and Wednesdays, 3:00 pm to 4:30 pm
Zoom https://umich.zoom.us/j/96943025564
Live attendance is strongly advised.

Office hours Live streamed, not recorded.
Monday through Thursday, 4:30 pm to 5:30 pm
Zoom https://umich.zoom.us/j/2852894520

Labs Live streamed and recorded.

 Alex Erf (alexerf)
Fridays, 10:30 am to 11:30 am
Zoom https://umich.zoom.us/j/97763265848

 Dan Hoekwater (dhoek)
Thursdays, 3:00 pm to 4:00 pm
Zoom https://umich.zoom.us/j/99742264598

 Alex Jalkanen(alexjalk)
Thursdays, 10:30 am to 11:30 am
Zoom https://umich.zoom.us/j/94438882408

Staff email eecs485staff@umich.edu

Prerequisites EECS 281

Classification Depending on your major:
CE: MDE or EECS elective
CSE: MDE or Flex Tech elective
CS-LSA: Capstone or Flex Tech elective
EE and DS: Flex Tech elective

Piazza https://piazza.com/class/kjnig5v3n6i5r7

Autograder https://autograder.io/web/course/95

mailto:nham@umich.edu
https://web.eecs.umich.edu/%7Enham/
https://umich.zoom.us/j/96943025564
https://umich.zoom.us/j/2852894520
https://umich.zoom.us/j/97763265848
https://umich.zoom.us/j/99742264598
https://umich.zoom.us/j/94438882408
mailto:eecs485staff@umich.edu
https://piazza.com/class/kjnig5v3n6i5r7

2

Overview

This is a course in how to tackle a large system programming project in C++. You’ll work
on a team of 6 to write a complete multithreaded internet search engine from scratch.

My objective is to offer students an opportunity to work on a significant relatable design
project (something you can explain to your family and to recruiters) early in your
undergraduate careers. I want the experience to be like working on the startup dev team
for a new product (like the one I had on the startup team for what became the Bing
engine.)

Sixty percent of your grade will be on the project and will be competitive, based mostly on
your team’s performance compared to the others and on your individual contribution to your
team. Thirty percent of your grade will be on the exams. Ten percent is homework.

This will be the third time for this course. The engines submitted in the past have ranged in
size, averaging around 6 KLOC. (Yes, a little smaller than you might have guessed.)
Sounds easy (maybe) but you will deal with a lot more ambiguity than in most classes, in
part because the course is still so raw and under construction.Learning objectives

Here are main learning objectives:

1. The experience of working on the startup dev team for a significant project in C++,
building a complete working internet search engine from scratch.

2. The knowledge, skills and ability to work with others to research, define, estimate, plan
and carry out the design of such a large, complex software project, especially, one you
don’t already know how to do.

3. An understanding of how a large system is decomposed into separable parts with
interfaces exposing a limited surface area and how they talk to each other.

4. An understanding of how a search engine works and how its parts talk to each other.

5. An understanding of and ability to use the low-level operating system facilities for files,
process and thread creation, synchronization, IPC and sockets.

6. An appreciation of software as art and of the software design process as a fundamentally
creative activity where you make choices.

7. The ability to communicate your results by demonstrating your product, producing a
final report and presenting your work to the class and invited guests in a professional
manner.

System design

System design projects always seem to have some defining characteristics.

1. There’s an important domain-specific part that asks you to learn something new about
an interesting problem you’ve never seen before, in this case, how a search engine
works.

3

2. There’s a need to invent a solution, an architecture, breaking the problem down into lots
of moving parts, with lots of data structures and algorithms.

3. It’s usually “close to the metal” with lots of low-level OS calls everywhere and the need
to define file and interchange formats, perform handshakes, share resources using locks,
deal seriously with error recovery, etc.

4. They're usually team efforts because they're too big to do any other way.

5. You build the whole thing, often from scratch, and at the end, you get to see it work and
it feels good.

Every new design project always has a new domain-specific part, which keeps a career in
system design interesting, but the rest of the skills are the same and they’re things most
people learn by doing.

What I like about a search engine as a case study in system design is that it’s a really
compact fun project that hits on every bit of what, to me, system design is all about.

The project

You will self-select into teams of 6 to design and build a complete working internet search
engine, assigning your own roles. Think about who you’d like to work with and see if they’d
like to go in with you. Teams that form early have advantage. If you’ve taken 280 and
281, I will try to cover the rest of what you need to know to build any part of the engine.

These are the basic pieces you will need to build.

1. HTML parser.
2. Crawler.
3. Index.
4. Constraint solver.
5. Query language.
6. Ranker.
7. Front end.

In lectures, we’ll walk through the problem posed by each piece and how it might be solved.
You will also find the text helpful in explaining how a search engine works. A lot of the
pieces need to talk to the operating system, so we’ll go through a lot of toy examples in
C++ on Linux in lecture, lab and homework showing, e.g., how to memory-map a file,
create a thread or open a socket.

But you will have to make many of your own decisions as a group about what your
architecture should look like, what’s minimally needed and what’s nice to have, how each
piece will work, how the pieces will talk and how you’ll get it all done on time.

All your work will be in C++ and all of it must be yours. All your code must adhere to the
style sheet I’ll provide. I’m still struggling with how to set guidance but I prefer you not use
a lot of STL outside of test cases. I’d like you do your own problem-solving, inventing your

4

own data structures and templates. I think it will raise your awareness of lower-level design
and performance issues.

Your grade on the project will depend in roughly equal measure on your individual and team
performance. Your team performance will be determined on a competitive basis by ranking
your engine’s overall performance, features, index size and quality against the engines
created by the other teams. I will also consider your team’s ability to communicate your
results through your presentation, demonstration and final report.

Your individual performance on the project will be based on your ability to work with others
and contribute to your team’s success. I’ll primarily consider the number of lines of code
you write, the complexity of the tasks it performs, its performance, the creativity it displays,
and the overall elegance. I will also consider how you’ve contributed to the atmosphere,
enthusiasm, creativity, progress, inclusiveness, camaraderie, health and overall success of
your team.

Homework

You will have individual homework assignments nearly every week designed to help with
various parts of the project. Many will have labs devoted to them. You’ll have to do the
first few alone but I’ll allow teams of two or three on most of them. You’ll have some
assignments.

Texts

There will be only one required text. What I like about Information Retrieval is that it
describes a lot of the pieces (except for ranking) in the same way we thought about it at
Microsoft. An electronic version will be available. You’ll need to read the first 6 chapters.

Information Retrieval: Implementing and Evaluating
Search Engines
Reprint edition (February 12, 2016)
Stefan Büttcher, Charles L.A. Clarke, Gordon V. Cormack
The MIT Press
ISBN 978-0262528870

5

Grading

Here’s a rough idea of the weighting I expect to apply.

Group project and other activities
 Group performance 25%
 Individual contribution 25%
Homework 20%
Midterm 15%
Optional final exam 15%

The midterm and final will be administered online using the Crabster randomized exam
server. Both exams will be open everything except collaboration. If you choose to skip the
final, I will use your midterm score.

I grade on the curve, scaling the results by deciding what I think was an A and what I think
was a C and then interpolating in between. I expect but do not promise that most students
will fall between 2.8 and 4.0 with median around 3.2 or a little higher.

Late policy

Submissions are expected to be on time. Late submissions may/may not be accepted.

Late withdrawals

I ask that you not withdraw once the teams are formed and underway.

Course revisions

This is still a relatively new course so you should expect I’m still learning how to make it
better and that I may make reasonable revisions to content, assignments, exams or grading
as may be appropriate.

All the work must be your own

You may certainly compare notes with other students and other teams and of course I
understand that you may do research using Google. But absolutely everything you turn in
to me must be your own work. On your exams, you will be required to copy the Honor
Pledge in your own handwriting and sign your name to it.

I have neither given nor received unauthorized aid on this examination, nor have I
concealed any violations of the Honor Code.

I report everything.

6

Disability

Access and Accommodations: Your experience in this class is important to me and to the
University of Michigan, where it is our policy and practice to create inclusive and accessible
learning environments consistent with federal and state law.

If you experience barriers based on a temporary or permanent disability (including, but not
limited to mental health, attention-related, learning, vision, hearing, physical or health
impacts), please seek a meeting with the Services for Students with Disabilities (SSD) office
at 734-763-3000 or https://ssd.umich.edu to help us determine appropriate academic
accommodations. SSD typically recommends accommodations through a Verified
Individualized Services and Accommodations (VISA) form. Any information you provide is
private and confidential and will be treated as such.

If you have already established accommodations with SSD, please tell me what they are so
I can be sure to provide them.

List of topics

Here is a rough outline of the topics we’ll discuss, interwoven over the semester. We
obviously won’t dive into everything to the same depth nor necessarily in this order.

1. Introduction to the course. Expectations, grading, coding style requirements. Brief
overview of the project and of how a search engine works.

2. Attributes and organization of a successful software development team. How to and
how not.

3. The role of ideas and creativity in software design. Software as art. Beautiful code,
efficiency, elegance. The style guide we’ll follow.

4. The software design process.

a. The initial vision. Something has become possible.
b. Research, reverse engineering, brain-storming.
c. Problem-choosing, deciding what’s in and what’s not.
d. Decomposition into an architecture of components with interfaces.
e. The product spec.
f. Gantt charts and project planning.
g. KLOCs, index size and other metrics.

5. OS facilities.

a. The file system.
b. Memory-mapped files.
c. Sockets and SSL.
d. Processes and threads.
e. Servers.
f. Producer-consumer relationships.
g. Locks, critical sections, race conditions.

https://ssd.umich.edu/

7

6. Search engine basics.

a. Brief history of information retrieval and web search.
b. The concept of relevance.
c. Dynamic and static rank.
d. Text formats and code sets, Unicode and UTF-8.
e. Simple HTML, title, heading, body text, links and anchor text.
f. Tokenization, stop words, stemming.
g. Crawling and the frontier.
h. Politeness in crawling.
i. Duplicates and shingling.
j. The inverted word index.
k. The constraint solver.
l. Query compiling.
m. Simple dynamic ranking.

7. Ethics. What does it mean to be ethical? What does it mean to be an ethical engineer?

Are we responsible for our products? What if someone could use our products to harm
people? What if we know there’s a probability they may fail and kill people?

	EECS 440 System Design of a Search Engine Winter 2021 Syllabus
	Overview
	System design
	The project
	Homework
	Texts
	Grading

	Late policy
	Late withdrawals
	Course revisions
	All the work must be your own

	Disability
	List of topics

